Ethernet

Infos
Ethernet est un protocole de réseau local à commutation de paquets. Bien qu'il implémente la couche physique (PHY) et la sous-couche Media Access Control (MAC) du modèle OSI, le protocole Ethernet est classé dans la couche de liaison, car les formats de trames que le standard définit sont normalisés et peuvent être encapsulés dans des protocoles autres que ses propres couches physiques MAC et PHY. Ces couches physiques font l'objet de normes séparées en fonction des d
Ethernet

Ethernet est un protocole de réseau local à commutation de paquets. Bien qu'il implémente la couche physique (PHY) et la sous-couche Media Access Control (MAC) du modèle OSI, le protocole Ethernet est classé dans la couche de liaison, car les formats de trames que le standard définit sont normalisés et peuvent être encapsulés dans des protocoles autres que ses propres couches physiques MAC et PHY. Ces couches physiques font l'objet de normes séparées en fonction des débits, du support de transmission, de la longueur des liaisons et des conditions environnementales. Ethernet a été standardisé sous le nom IEEE 802.3. C'est maintenant une norme internationale : ISO/CIE 8802-3. Depuis les années 1990, on utilise très fréquemment Ethernet sur paires torsadées pour la connexion des postes clients, et des versions sur fibre optique pour le cœur du réseau. Cette configuration a largement supplanté d'autres standards comme le Token Ring, FDDI et ARCNET. Depuis quelques années, les variantes sans-fil d'Ethernet (normes IEEE 802.11, dites « WiFi ») ont connu un fort succès, aussi bien sur les installations personnelles que professionnelles. Le nom Ethernet vient de son ancêtre ALOHAnet qui utilisait des ondes radiofréquences. Or on disait autrefois de ces dernières qu'elles se propageaient dans éther, milieu mythique dans lequel était censé baigner l'Univers. Quant au suffixe net, il s'agit de l'abréviation du mot « réseau » en Anglais.

Histoire

L'Ethernet a originellement été développé comme l'un des projets pionniers du Xerox PARC. Une histoire commune veut qu'il ait été inventé en 1973, date à laquelle Bob Metcalfe écrivit un mémo à ses patrons à propos du potentiel d'Ethernet. Metcalfe affirme qu'Ethernet a en fait été inventé sur une période de plusieurs années. En 1976, Robert Metcalfe et David Boggs (l'assistant de Metcalfe) ont publié un document intitulé Ethernet : Distributed Packet-Switching For Local Computer Networks (Ethernet : commutation de paquets distribuée pour les réseaux informatiques locaux). Metcalfe a quitté Xerox en 1979 pour promouvoir l'utilisation des ordinateurs personnels et des réseaux locaux, et a fondé l'entreprise 3Com. Il réussit à convaincre DEC, Intel et Xerox de travailler ensemble pour promouvoir Ethernet en tant que standard. Ethernet était à l'époque en compétition avec deux systèmes propriétaires, Token Ring et ARCnet, mais ces deux systèmes ont rapidement diminué en popularité face à l'Ethernet. Pendant ce temps, 3Com est devenue une compagnie majeure du domaine des réseaux informatiques.

Description générale

L'Ethernet est basé sur le principe de membres (pairs) sur le réseau, envoyant des messages dans ce qui était essentiellement un système radio, captif à l'intérieur d'un fil ou d'un canal commun, parfois appelé l'éther. Chaque pair est identifiée par une clé globalement unique, appelée adresse MAC, pour s'assurer que tous les postes sur un réseau Ethernet aient des adresses distinctes. Une technologie connue sous le nom de Carrier Sense Multiple Access with Collision Detection (Écoute de porteuse avec accès multiples et détection de collision) ou CSMA/CD régit la façon dont les postes accèdent au média. Au départ développée durant les années 1960 pour ALOHAnet à Hawaii en utilisant la radio, la technologie est relativement simple comparée à Token Ring ou aux réseaux contrôlés par un maître. Lorsqu'un ordinateur veut envoyer de l'information, il obéit à l'algorithme suivant :
- Si le média n'est pas utilisé, commencer la transmission, sinon aller à l'étape 4
- Si une collision est détectée, continue à transmettre jusqu'à ce que le temps minimal pour un paquet soit dépassé (pour s'assurer que tous les postes détectent la collision), puis aller à l'étape 4
- Indiquer la réussite au protocole du niveau supérieur et sortir du mode de transfert.
- Attendre jusqu'à ce que le fil soit inutilisé.
- Attendre pendant un temps aléatoire, puis retourner à l'étape 1, sauf si le nombre maximal d'essais de transmission a été dépassé.
- Annoncer l'échec au protocole de niveau supérieur et sortir du mode de transmission. En pratique, ceci fonctionne comme une discussion ordinaire, où les gens utilisent tous un médium commun (l'air) pour parler à quelqu'un d'autre. Avant de parler, chaque personne attend poliment que plus personne ne parle. Si deux personnes commencent à parler en même temps, les deux s'arrêtent et attendent un court temps aléatoire. Il y a de bonnes chances que les deux personnes attendent un délai différent, évitant donc une autre collision. Des temps d'attente exponentiels sont utilisés lorsque plusieurs collisions surviennent à la suite. Comme dans le cas d'un réseau non commuté, toutes les communications sont émises sur un médium partagé, toute information envoyée par un poste est reçue par tous les autres, même si cette information était destinée à une seule personne. Les ordinateurs connectés sur l'Ethernet doivent donc filtrer ce qui leur est destiné ou non. Ce type de communication « quelqu'un parle, tous les autres entendent » d'Ethernet est une de ses faiblesses, car, pendant que l'un des nœuds émet, toutes les machines du réseau reçoivent et doivent, de leur côté, observer le silence. Ce qui fait qu'une communication à fort débit entre seulement deux postes peut saturer tout un réseau local. De même, comme les chances de collision sont proportionnelles au nombre de transmetteurs et aux données envoyées, le réseau devient extrêmement congestionné au-delà de 50 % de sa capacité (indépendamment du nombre de sources de trafic). Pour résoudre ce problème, les commutateurs ont été développés afin de maximiser la bande passante disponible. Suivant le débit utilisé, il faut tenir compte du domaine de collision régi par les lois de la physique et notamment le déplacement électronique dans un câble de cuivre. Si l'on ne respecte pas ces distances maximales entre machines, le protocole CSMA/CD n'a pas lieu d'exister. De même si on utilise un commutateur, CSMA/CD est désactivé. Et ceci pour une raison que l'on comprend bien. Avec CSMA/CD, on écoute ce que l'on émet, si quelqu'un parle en même temps que moi il y a collision. Il y a donc incompatibilité avec le mode full-duplex des commutateurs.

Types de trames Ethernet et champ EtherType

Il y a quatre types de trame Ethernet :
- Ethernet originale version I (n'est plus utilisée)
- Ethernet Version 2 ou Ethernet II (appelée trame DIX, toujours utilisée)
- IEEE 802.x LLC
- IEEE 802.x LLC/SNAP Ces différents types de trame ont des formats et des valeurs de MTU différents mais peuvent coexister sur un même médium physique. La version 1 originale de Xerox possède un champ de 16 bits identifiant la taille de trame, même si la longueur maximale d'une trame était de 1500 octets. Ce champ fut vite réutilisé dans la version 2 de Xerox comme champ d'identification, avec la convention que les valeurs entre 0 et 1500 indiquaient une trame Ethernet originale, mais que les valeurs plus grandes indiquaient ce qui a été appelé l'EtherType, et l'utilisation du nouveau format de trame. Ceci est maintenant pris en charge dans les protocoles IEEE 802 en utilisant l'entête SNAP. L'IEEE 802.x a de nouveau défini le champ de 16 bits après les adresses MAC comme la longueur. Comme l'Ethernet I n'est plus utilisé, ceci permet aux logiciels de déterminer si une trame est de type Ethernet II ou IEEE 802.x, permettant la cohabitation des deux standards sur le même médium physique. Toutes les trames 802.x ont un champ LLC. En examinant ce dernier, il est possible de déterminer s'il est suivi par un champ SNAP ou non. Synthèse graphique Image extraite du document de G.Requilé du CNRS Intégralité du document sur : http://www.lmgc.univ-montp2.fr/~requile/documents/reseau/LLC.pdf

Trame Ethernet

En octets Attention il existe d'autres types de trames Ethernet spécifiant la longueur notamment ainsi que d'autres particularités. Avec pour le champs Type de protocole les valeurs suivantes :
-0x0800 :IPv4
-0x86DD :IPv6
-0x0806 :ARP
-0x8035 :RARP
-0x0600 :XNS
-0x809B :AppleTalk Remarques :
-On notera la présence parfois d'un préambule de 64 bits de synchronisation, alternance de 1 et 0 avec les deux derniers bits à 1. (non représenté sur la trame).
-L'adresse de broadcast (diffusion) Ethernet a tous ses bits à 1
-La taille minimale des données est de 46 octets (RFC 894 - Frame Format)

Variétés d'Ethernet

La section ci-dessous donne un bref résumé de tous les types de média d'Ethernet. En plus de tous ces standards officiels, plusieurs vendeurs ont implémenté des types de média propriétaires pour différentes raisons -- quelquefois pour supporter de plus longues distances sur de la fibre optique.

Quelques anciennes variétés d'Ethernet

- Xerox Ethernet -- L'implémentation originale d'Ethernet, qui a eu deux versions, la version 1 et 2, durant son développement. La version 2 est encore souvent utilisée.
- 10BASE5 (aussi appelé Thick Ethernet) -- Ce standard de l'IEEE publié très tôt utilise un câble coaxial simple dans lequel on insère une connexion en perçant le câble pour se connecter au centre et à la masse (prises vampires). Largement désuet, mais à cause de plusieurs grandes installations réalisées très tôt, quelques systèmes peuvent encore être en utilisation.
- 10BROAD36 -- Obsolète. Un vieux standard supportant l'Ethernet sur de longues distances. Il utilisait des techniques de modulation en large bande similaires à celles employées par les modems câble, opérées sur un câble coaxial.
- 1BASE5 -- Une tentative de standardisation de solution pour réseaux locaux à bas prix. Il opère à 1 Mbit/s mais a été un échec commercial.

Ethernet 10 Mbit/s

- 10BASE2 (aussi appelé ThinNet ou Cheapernet) -- un câble coaxial de 50 ohms connecte les machines ensemble, chaque machine utilisant un adaptateur en T pour se brancher à sa carte réseau. Requiert une terminaison à chaque bout. Pendant plusieurs années, ce fut le standard Ethernet dominant.
- 10BASE-T -- Fonctionne avec 4 fils (deux paires torsadées) sur un câble CAT-3 ou CAT-5 avec connecteur RJ45. Un concentrateur (ou hub) ou un commutateur (ou switch) est au centre du réseau, ayant un port pour chaque nœud. C'est aussi la configuration utilisée pour le 100BASE-T et le Gigabit Ethernet (câble CAT-6). Bien que la présence d'un nœud central (le hub) donne une impression visuelle de topologie en étoile, il s'agit pourtant bien d'une topologie en bus - tous les signaux émis sont reçus par l'ensemble des machines connectées. La topologie en étoile n'apparaît que si on utilise un commutateur (switch).
- FOIRL -- Fiber-optic inter-repeater link (lien inter-répéteur sur fibre optique). Le standard original pour l'Ethernet sur la fibre optique.
- 10BASE-F -- Terme générique pour la nouvelle famille d'Ethernet 10 Mbit/s : 10BASE-FL, 10BASE-FB et 10BASE-FP. De ceux-ci, seulement 10BASE-FL est beaucoup utilisé.
- 10BASE-FL -- Une mise-à-jour du standard FOIRL.
- 10BASE-FB -- Prévu pour inter-connecter des concentrateurs ou commutateurs au cœur du réseau, mais maintenant obsolète.
- 10BASE-FP -- Un réseau en étoile qui ne nécessitait aucun répéteur, mais qui n'a jamais été réalisé.

Fast Ethernet (100 Mbit/s)

- 100BASE-T -- Un terme pour n'importe lequel des standards 100 Mbit/s sur paire torsadée. Inclut 100BASE-TX, 100BASE-T4 et 100BASE-T2.
- 100BASE-TX -- Utilise deux paires et requiert du câble CAT-5. Topologie en étoile en utilisant un concentrateur (hub) ou un commutateur (switch), comme pour le 10BASE-T, avec lequel il est compatible.
- 100BASE-T4 -- Permet le 100 Mbit/s (en semi-duplex seulement) sur du câble CAT-3 (qui était utilisé dans les installations 10BASE-T). Utilise les quatre paires du câble. Maintenant désuet, comme le CAT-5 est la norme actuelle.
- 100BASE-T2 -- Aucun produit n'existe. Supporte le mode full-duplex et utilise seulement deux paires, avec des câbles CAT-3. Il est équivalent au 100BASE-TX sur le plan des fonctionnalités, mais supporte les vieux câbles.
- 100BASE-FX -- Ethernet 100 Mbit/s sur fibre optique.

Gigabit Ethernet ( Mbit/s)

- 1000BASE-T -- 1 Gbit/s sur câble de paires torsadées de catégorie 5e ou supérieure, sur une longueur maximale de 100m. Utilise les 4 paires en full duplex, chaque paire transmettant 2 bits/s par baud, à l'aide d'un code à 5 moments. Soit un total de 1 octet par top d'horloge sur l'ensemble des 4 paires, dans chaque sens. Compatible avec 100BASE-TX et 10BASE-T, avec détection automatique des Tx et Rx assurée. La topologie est ici toujours en étoile car il n'existe pas de concentrateurs 1000 Mbps. On utilise donc obligatoirement des commutateurs (switch).
- 1000BASE-X -- 1 Gbit/s qui utilise des interfaces modulaires (appelés GBIC) adaptées au média (Fibre Optique Multi, Mono-mode, cuivre).
- 1000BASE-SX -- 1 Gbit/s sur fibre optique multimodes à 850nm.
- 1000BASE-LX -- 1 Gbit/s sur fibre optique monomodes et multimodes à 1300nm.
- 1000BASE-LH -- 1 Gbit/s sur fibre optique, sur longues distances.
- 1000BASE-ZX -- 1 Gbit/s sur fibre optique monomodes longues distances.
- 1000BASE-CX -- Une solution pour de courtes distances (jusqu'à 25 m) pour le 1 Gbit/s sur du câble de cuivre spécial. Précède 1000BASE-T et est maintenant obsolète. (cf. cercle CREDO)

Ethernet 10 gigabit par seconde

Le nouveau standard Ethernet 10 Gigabits entoure sept types de média différents pour les réseaux locaux, réseaux métropolitains et réseaux étendus. Il est actuellement spécifié par un standard supplémentaire, l'IEEE 802.3ae, et va être incorporé dans une révision future de l'IEEE 802.3.
- 10GBASE-CX4 (cuivre, câble infiniband, 802.3ak) -- utilise un câble en cuivre de type infiniband 4x sur une longueur maximale de 15 mètres.
- 10GBASE-T -- transmission sur câble catégorie 6, 6A ou 7 (802.3an), en full duplex sur 4 paires avec un nombre de moments de codage qui sera fonction de la catégorie retenue pour le câble (et de l'immunité au bruit souhaitée), sur une longueur maximale de 100 mètres. Devrait être compatible avec 1000BASE-T, 100BASE-TX et 10BASE-T
- 10GBASE-SR (850nm MM, 300 meter, dark fiber) -- créé pour supporter de courtes distances sur de la fibre optique multimode, il a une portée de 26 à 82 mètres, en fonction du type de câble. Il supporte aussi les distances jusqu'à 300 m sur la nouvelle fibre multimode 2000 MHz.
- 10GBASE-LX4 -- utilise le multiplexage par division de longueur d'onde pour supporter des distances entre 240 et 300 mètres sur fibre multimode. Supporte aussi jusqu'à 10 km avec fibre monomode.
- 10GBASE-LR (1310nm SM, 10km, dark fiber) et 10GBASE-ER (1550nm SM, 40km, dark fiber) -- Ces standards supportent jusqu'à 10 et 40 km respectivement, sur fibre monomode.
- 10GBASE-SW (850nm MM, 300 meter, SONET), 10GBASE-LW (1310nm SM, 10km, SONET) et 10GBASE-EW (1550nm SM, 40km SONET). Ces variétés utilisent le WAN PHY, étant conçu pour inter-opérer avec les équipements OC-192 / STM-64 SONET/SDH. Elles correspondent au niveau physique à 10GBASE-SR, 10GBASE-LR et 10GBASE-ER respectivement, et utilisent le même type de fibre, en plus de supporter les mêmes distances. (Il n'y a aucun standard WAN PHY correspondant au 10GBASE-LX4.) L'Ethernet 10 Gigabits est assez récent, et il reste à voir lequel des standards va obtenir l'acceptation des compagnies. Détails techniques de 10GBASE-R utilisé sur LAN & 10GBASE-W utilisé sur WAN et encapsulant Ethernet dans une trame SDH ou SONET.

Voir aussi

- PBT/PBB-TE technologie Ethernet utilisée dans les réseaux d'opérateurs
- Bonding
- CHAOSnet
- CPL pour Courant Porteur en Ligne
- AFDX (Avionics Full DupleX) réseau Ethernet redondant et fiabilisé
- FSFB2 (Fail Safe Field Bus 2nd generation) Protocole Sécuritaire pour réseau Ethernet ==
Sujets connexes
ALOHAnet   ARCnet   Adresse MAC   Algorithmique   Anglais   Années 1960   Années 1990   Bande passante   Bonding   CAT-5   CSMA/CD   Carte réseau   Commutateur réseau   Commutation de paquets   Concentrateur   Couche de liaison   Couche physique   Courants porteurs en ligne   Câble coaxial   DEC   EtherType   Fiber Distributed Data Interface   Fibre optique   Gigabit Ethernet   Hawaii   IEEE 802   IEEE 802.11   IEEE 802.3   IEEE 802.3ae   Logical Link Control   Maximum Transmission Unit   Media Access Control   Modem câble   Modèle OSI   Octet   Ohm   Paire torsadée   Protocole de communication   Provider Backbone Bridge Traffic Engineering   RJ45   Radiodiffusion   Réseau informatique   Réseau local   Réseau étendu   SDH   SONET   Xerox   Xerox PARC  
#
Accident de Beaune   Amélie Mauresmo   Anisocytose   C3H6O   CA Paris   Carole Richert   Catherinettes   Chaleur massique   Championnat de Tunisie de football D2   Classement mondial des entreprises leader par secteur   Col du Bonhomme (Vosges)   De viris illustribus (Lhomond)   Dolcett   EGP  
^