Pulsar

Infos
Un pulsar est le nom donné à une étoile à neutrons, tournant très rapidement sur elle-même (période typique de l'ordre de la seconde, voire beaucoup moins pour les pulsars milliseconde) et, émettant un fort rayonnement électromagnétique dans la direction de son axe magnétique. Le nom de pulsar vient de ce que lors de leur découverte, ces objets ont dans un premier temps été interprétés comme étant des étoiles variables sujettes à des pulsations très rapides.
Pulsar

Un pulsar est le nom donné à une étoile à neutrons, tournant très rapidement sur elle-même (période typique de l'ordre de la seconde, voire beaucoup moins pour les pulsars milliseconde) et, émettant un fort rayonnement électromagnétique dans la direction de son axe magnétique. Le nom de pulsar vient de ce que lors de leur découverte, ces objets ont dans un premier temps été interprétés comme étant des étoiles variables sujettes à des pulsations très rapides. Pulsar étant l'abréviation de pulsating radio source (source radio pulsante), cette hypothèse s'est rapidement avérée incorrecte, mais le nom leur est malgré tout resté. Image composite visible/rayon X du pulsar du Crabe, né de la supernova historique SN 1054, montrant le gaz environnant la nébuleuse agité par le champ magnétique et le rayonnement du pulsar. Image NASA.

Généralité

L'axe magnétique d'une étoile à neutrons n'étant en général, à l'instar de la Terre, pas parfaitement aligné avec son axe de rotation, la région d'émission correspond à un instant donné à un faisceau, qui balaie au cours du temps un cône du fait de la rotation de l'astre. Un pulsar se signale pour un observateur distant sous la forme d'un signal périodique, la période correspondant à la période de rotation de l'astre. Ce signal est extrêmement stable, car la rotation de l'astre l'est également, mais ralentit très légèrement au cours du temps. Les pulsars sont issus de l'explosion d'une étoile massive en fin de vie, phénomène appelé supernova. Toutes les supernovae ne donnent pas naissance à des pulsars, certaines laissant derrière elles un trou noir, d'autres ne laissant aucun résidu compact derrière elles (supernovae de type Ia, ou thermonucléaires). Si une étoile à neutrons a une durée de vie virtuellement infinie, le phénomène d'émission caractéristique d'un pulsar ne se produit en général que pendant quelques millions d'années, après quoi il devient trop faible pour être détectable avec les technologies actuelles. Les pulsars ont été découverts en 1967 de façon quelque peu fortuite par Antony Hewish et son étudiante Jocelyn Bell (maintenant Jocelyn Bell-Burnell) qui étudiaient des phénomènes de scintillation réfractive dans le domaine radio et avaient de ce fait besoin d'un instrument mesurant des variations d'un signal radio sur des courtes durées (une fraction de seconde). L'instrument a de ce fait permis de détecter la variation périodique d'objets qui se sont avérés être des pulsars, le premier d'entre eux portant le nom de PSR B1919+21 (ou CP 1919 à l'époque). Cette découverte fut récompensé par le Prix Nobel de physique, attribué en 1974 à Hewish ainsi que son collaborateur Martin Ryle, qui avaient construit l'instrument ayant permis la découverte, mais pas à Jocelyn Bell, chose qui apparaît aujourd'hui comme étant une injustice. Les pulsars ont depuis permis le développement important de très nombreuses disciplines de l'astrophysique, allant de tests de la relativité générale et de la physique de la matière condensée, jusqu'à l'étude de la structure de la Voie lactée et bien sûr des supernovae. L'étude d'un pulsar binaire, PSR B1913+16, a pour la première fois permis de mettre en évidence la réalité du rayonnement gravitationnel prédit par la relativité générale, et a également été récompensée du Prix Nobel de physique (Russell Alan Hulse et Joseph Hooton Taylor, en 1993). Du fait de l'émission d'un pulsar cantonnée à un cône, un grand nombre de pulsars sont inobservables depuis la Terre, car celle-ci ne se trouve pas dans le cône balayé par le faisceau de nombreux pulsars. Néanmoins, plus de 2000 pulsars sont connus à l'heure actuelle (2007), la quasi totalité d'entre eux étant situés dans la Voie lactée ou certains de ses amas globulaires, les autres, très peu nombreux, étant situés dans les deux Nuages de Magellan. Il existe une grande variété de types de pulsars (pulsars radio, pulsars X, pulsars X anormaux, magnétars, pulsars milliseconde), dont les propriétés dépendent essentiellement de leur âge et de leur environnement.

Histoire

Les pulsars ont été découverts en 1967 par Jocelyn Bell et Antony Hewish à Cambridge alors qu'ils utilisaient un radiotélescope pour étudier la scintillation des quasars. Ils trouvèrent un signal très régulier, constitué de courtes impulsions de rayonnement se répétant après quelques secondes. L'origine terrestre du signal était exclue car le temps qu'il prenait pour réapparaître était un jour sidéral et pas un jour solaire. Cette anomalie fut finalement identifiée au signal émis par une étoile à neutrons en rotation rapide. Les impulsions étaient (et sont toujours) émises toutes les 1, 3373 secondes et cette régularité excluait tout autre objet. Ce nouvel objet fut baptisé CP 19191 pour Cambridge Pulsar à proximité de 19h 19m et est nommé aujourd'hui PSR 1919+21 pour PulSaR à 19h19m en ascension droite et +21° de déclinaison. Le nom original pour l'objet était « LGM », pour Little Green Men (les petits hommes verts), car le signal faisait penser à celui provenant d'une balise qui aurait été fabriquée par une intelligence extraterrestre. Après maintes spéculations, il fut admis que le seul objet naturel qui pourrait être responsable de ce signal était une étoile à neutrons ; un objet dont l'existence était encore hypothétique. Dans les années 1980, on découvrit les pulsars milliseconde, qui, comme leur nom l'indique, possèdent des périodes de quelques millisecondes. En outre, une découverte importante fut celle d'un pulsar dans un système binaire. La précision élevée des mesures a permis aux astronomes de calculer la perte d'énergie orbitale du système, que l'on attribue à l'émission d'ondes gravitationnelles. Depuis 1982, le pulsar B1937+21 possédait la fréquence de rotation la plus élevée et avait été détecté au sein de l'amas globulaire Terzan 5. Sa fréquence de rotation s'élevait à 642 Hz. Au cours du mois de janvier 2006, une publication a fait état de la détection d'un pulsar baptisé Ter5ad toujours au sein du même amas globulaire et dont la fréquence de rotation s'élève à 716 Hz.

Théorie

Il est largement admis que les impulsions que nous observons sont produites quand un faisceau de rayonnement est dirigé dans notre direction à chaque rotation de l'étoile à neutrons. L'origine du faisceau est liée au non-alignement de l'axe du champ magnétique de l'étoile avec son axe de rotation. Le faisceau est émis à partir des pôles du champ magnétique qui peuvent fortement s'écarter des pôles de rotation de l'étoile. La source d'énergie du champ magnétique est l'énergie de rotation de l'étoile, rotation qui ralentit au fur et à mesure que l'énergie est émise. On pense que la grande vitesse de rotation des pulsars milliseconde est provoquée par la chute de matière arrachée à une étoile compagne. Un point intéressant dans l'étude des pulsars est l'observation de petites irrégularités de la vitesse de rotation de l'étoile à neutrons. Normalement, cette vitesse diminue très lentement et très régulièrement, mais on observe des variations soudaines. Pendant un certain temps, on pensa que ces variations étaient des tremblements d'étoiles provoqués par un réajustement de la croûte de l'étoile. Des modèles où le problème est dû à un découplage de l'intérieur probablement supraconducteur de l'étoile ont été également avancés. Actuellement, on donne la préférence à un modèle où ces variations proviennent d'un découplage du cœur supraconducteur de l'étoile. En 2003, des observations du pulsar de la nébuleuse du Crabe ont révélé l'existence de sous-impulsions d'une durée de quelques nanosecondes se superposant au signal principal. On pense que ces impulsions sont émises par des régions de la surface du pulsar ne faisant pas plus de 60 cm de diamètre, ce qui font d'elles les plus petites structures à l'extérieur du système solaire à pouvoir être mesurées.

Importance

Comme mentionné ci-dessus, la découverte des pulsars a permis aux astronomes d'étudier un objet jamais observé auparavant : l'étoile à neutrons. Ce genre d'objet est le seul endroit où on peut observer, indirectement, le comportement de la matière à une densité similaire à celle existant dans un noyau atomique. En outre, les pulsars milliseconde ont permis de tester la relativité générale dans des conditions de gravité intense.

Voir aussi

===
Sujets connexes
Amas globulaire   Années 1980   Antony Hewish   Ascension droite   Astrophysique   Cambridge   Champ magnétique   Cône (géométrie)   Densité   Déclinaison (astronomie)   Jocelyn Bell   Joseph Hooton Taylor   Jour sidéral   Liste de pulsars notables   Magnétar   Martin Ryle   Matière   Noyau atomique   Nébuleuse du Crabe   Onde gravitationnelle   PSR B1913+16   PSR B1919+21   Physique de la matière condensée   Prix Nobel de physique   Pulsar X anormal   Pulsar binaire   Pulsar milliseconde   Période de rotation   Quasar   Radiotélescope   Rayon X   Rayonnement électromagnétique   Relativité générale   Russell Alan Hulse   Réfraction   SN 1054   Scintillation   Seconde (temps)   Supernova   Supernova historique   Supraconductivité   Système solaire   Temps solaire   Terre   Trou noir   Voie lactée (galaxie)  
#
Accident de Beaune   Amélie Mauresmo   Anisocytose   C3H6O   CA Paris   Carole Richert   Catherinettes   Chaleur massique   Championnat de Tunisie de football D2   Classement mondial des entreprises leader par secteur   Col du Bonhomme (Vosges)   De viris illustribus (Lhomond)   Dolcett   EGP  
^